Efficiency of vertebrate locomotory muscles.

نویسندگان

  • N C Heglund
  • G A Cavagna
چکیده

We have examined the efficiency of vertebrate striated muscle at two different organizational levels: whole animals and isolated muscles. Terrestrial locomotion is used as a model of 'normal' muscular contraction; animal size and running speed are used as independent variables in order to change either the metabolic requirements of the muscles or the mechanical power production by the muscles over a wide range of values. The weight-specific metabolic power input to an animal increases nearly linearly with speed and increases with decreasing body size, while the weight-specific mechanical power output increases curvilinearly with speed and is independent of size. Consequently, the efficiency of the muscles in producing positive work increases with speed and the peak efficiency increases with increasing body size, attaining values of over 70% in large animals, but only 7% in small ones. The isolated muscle experiments were performed on frog muscle, and rat 'fast' and 'slow' muscles. We measured the work done, the oxygen consumed during recovery from the stimulation, and calculated the efficiency and the 'economy' (the cost of maintaining tension). The muscles were made to: (i) emulate the contractions seen during locomotion, i.e. shorten after a pre-stretch; or (ii) shorten at the same velocity and from the same muscle length as in (i), but without the pre-stretch. It was found that in mammalian muscles the peak efficiency with a pre-stretch attained high values, approaching the peak efficiencies in large animals. The maximum efficiency (attained at 1 length s-1 in fast muscle and at 0.5 lengths s-1 in slow muscle) did not differ much in the two muscles, whereas economy was greater in the slow muscle than in the fast muscle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quest for Speed: Muscles Built for High-Frequency Contractions.

Vertebrate sound-producing muscles can contract at frequencies greater than 100 Hz, a feat impossible in locomotory muscles. This is not accomplished by unique proteins or structures but by qualitative shifts in isoforms and quantitative reapportionment of structures. Speed comes with costs and trade-offs, however, that restrict how a muscle can be used.

متن کامل

The Effect of Deafferentation upon the Locomotory Activity of Amphibian Limbs

IN 1912-13 Graham Brown and Sherrington showed, independently, that rhythmical activity could be maintained in a pair of deafferentated antagonistic mammalian muscles; since then it has been customary to regard locomotory rhythms as the expression of intrinsic activity within the nerve cord. On the other hand, a study of the responses of vertebrate limbs to suitable reflex stimulation makes it ...

متن کامل

Trading force for speed: why superfast crossbridge kinetics leads to superlow forces.

Superfast muscles power high-frequency motions such as sound production and visual tracking. As a class, these muscles also generate low forces. Using the toadfish swimbladder muscle, the fastest known vertebrate muscle, we examined the crossbridge kinetic rates responsible for high contraction rates and how these might affect force generation. Swimbladder fibers have evolved a 10-fold faster c...

متن کامل

Histochemical determination of the fiber composition of locomotory muscles in a lizard, Dipsosaurus dorsalis.

A histochemical survey was done on the fiber composition of 12 different locomotory muscles in the lizard Dipsosaurus dorsalis. Three types of fibers were found in all muscles: (1) fast-twitch-glycolytic (FG); (2) fast-twitch-oxidative-glycolytic (FOG); and (3) tonic fibers. Virtually all locomotory muscles contain some tonic fibers. Most muscles have bulk white regions (containing mostly FG fi...

متن کامل

The Mechanism of Locomotion in the Leech {hirudo Medic

CONSIDERABLE uncertainty still exists concerning the nature of the mechanism which maintains the normal locomotory rhythm of terrestrial animals. Two types of theory have been advanced: (i) That the rhythm is determined by the existence of a closed chain of peripheral reflexes, each phase of a complete locomotory cycle setting up automatically the particular pattern of peripheral stimulation re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 115  شماره 

صفحات  -

تاریخ انتشار 1985